
www.manaraa.com

Reconfigurability in Object Database Management Systems:
An Aspect-Oriented Approach

Awais Rashid† and Ruzanna Chitchyan‡

†Computing Department, Lancaster University, Lancaster LA1 4YR, UK
E-mail: marash@comp.lancs.ac.uk Fax: +44 1524 593608

‡The Open University, UK & Open College of the North West, Storey Institute,
Lancaster LA1 1TH, UK

Email: r.chitchyan@lancaster.ac.uk Fax: +44 1524 388467

ABSTRACT.Cost-effective reconfiguration in ODBMSs is difficult to achieve due to the trade-
off between modularity and efficiency. Existing ODBMS designs offer limited reconfigurability
because reconfigurable features are closely woven with the components to improve efficiency.
This paper proposes the use of aspects - entities used by Aspect-Oriented Programming to
localise cross-cutting concerns - to separate reconfigurable features from the components
regardless of their granularity. This provides a cost-effective solution for both static and
dynamic reconfiguration. The effectiveness of the approach is demonstrated by discussing
dynamically reconfigurable instance adaptation in the SADES evolution system.

KEY WORDS: Reconfigurability, Object Database Management Systems, Aspect-Oriented
Programming, Aspect-Oriented Databases, Static Reconfiguration, Dynamic Reconfiguration,
Evolution

1. Introduction

Like any other software product reconfigurability is an essential requirement in object database
management systems (McCann 2000). An effective reconfiguration mechanism is one which
localises the impact of changes and automatically propagates them to the rest of the system
without compromising consistency. This reduces maintenance and upgrade costs and makes it
possible to customise (with minimal effort) the object database management system to the specific
needs of an organisation. An example of the latter is instance adaptation during object database
evolution1. For one organisation it might be sufficient that objects simulate a conversion to a
compatible type interface (similar to error handlers employed by ENCORE (Skarra et al. 1986))
while for another organisation it might be essential to actually convert objects between historical
type definitions (similar to update/backdate methods employed by CLOSQL (Monk et al. 1993)).
Such customisations may even be application specific (this implies dynamic reconfiguration using
more than one instance adaptation strategy). An effective reconfiguration mechanism localising
changes to the instance adaptation strategy and the associated adaptation routines can provide
such customisation in a cost-effective fashion.

Existing approaches e.g. (Guzenda 2000, McCann 2000) employ a component-based architecture
for the ODBMS to achieve reconfigurability. However, there exists a trade-off between

1 Evolution case studies at Open College of the North West where day-to-day activities revolve around the
databases.



www.manaraa.com

modularity and performance (Kiczales et al. 1997). As a result reconfigurability is available only at
a coarse granularity. For example, the transaction manager component can be exchanged with the
ripple effect limited to the glue code for the various components2. However, similar functionality
is not available at a finer granularity. Relatively minor changes to the individual components are
expensive as their modularity is compromised to preserve both modularity and performance of the
ODBMS. Code handling any cross-cutting features in these components is spread across them
(Kiczales et al. 1997). Consequently changes to these cross-cutting features are not localised
making reconfiguration an expensive task.

This paper proposes the use of aspects - entities used by Aspect-Oriented Programming (AOP)
(Kiczales et al. 1997) to localise cross-cutting concerns - to separate reconfigurable features at
both coarse and fine granularity. This allows cost-effective reconfiguration as changes are
localised. The aspects encapsulating reconfigurable features can be modified at compile-time
(static reconfiguration) or run-time (dynamic reconfiguration). The performance of the system is
not compromised due to the modularity as aspects are merged with the entities cross-cut by them
(at compile-time or run-time) to produce efficient code. The next section takes a closer look at
the reconfigurability problem in ODBMSs. Section 3 provides an overview of Aspect-Oriented
Programming. The aspect-oriented reconfiguration approach is discussed in section 4. Section 5
identifies some open issues while section 6 concludes the paper and discusses future directions.

2. Reconfigurability: The Problem

(Kiczales et al. 1997) demonstrates that a highly modular system is not necessarily the most
efficient. Efficient implementations tend to be less modular with the various components closely
woven. This is termed ascode tangling(Kiczales et al. 1997). There is a trade-off between
modularity/maintainability and efficiency/performance. This trade-off has a strong bearing on the
reconfigurability of an ODBMS as shown in fig. 1.

Glue
Code

Schema
Manager

Tr
an

sa
ct

io
n

M
an

ag
er

DBMSServer

O
th

er
C

om
po

ne
nt

s

Schema
Manager

Other
Features

DBMS
Server

Transaction
Manager

(a) (b)

Evolution
Primitives

Other
Features

Historical
InformationInstance

Adaptation

(c)

Fig. 1: Reconfigurability issues in (a) a monolithic ODBMS (b) a component-based ODBMS (c) a
component (schema manager) in a component-based ODBMS

2 Such an exchange might also introduce erroneous behaviour into the system (Brown et al. 1996). However, for
the purpose of this discussion it is assumed that consistency is maintained.



www.manaraa.com

Fig. 1(a) shows the structure of a monolithic ODBMS. Only three key components: the DBMS
server, the transaction manager and the schema manager are shown. Other components such as
the storage manager, etc. have been omitted for simplification. As shown in the figure the various
components are tangled in a monolithic system. While such a closely woven implementation
provides good performance/efficiency, reconfigurability is an expensive and difficult task as
changes to the various components are not localised (due to code tangling). Changing the
transaction model employed by the transaction manager, for example, at either compile-time or
run-time can have a large ripple effect on the whole system.

Fig. 1(b) shows a modular, component-based implementation of an ODBMS similar to the one
proposed by (McCann 2000). Again, only three key components: the DBMS server, the
transaction manager and the schema manager are shown for simplification. Such a design provides
effective reconfigurability. For example, the transaction manager (or any other component) can be
exchanged with the ripple effect mainly limited to the glue code. However, in order to strike the
right balance between modularity and efficiency the design of the individual components is not
highly modular. As shown in fig. 1(c) the modularity of the individual components is
compromised to preserve both modularity and efficiency of the ODBMS. As a result the coarse-
grained component, the OODBMS, is reconfigurable. However, reconfigurability at a finer
granularity (i.e. the components forming the OODBMS) is expensive as design at this level is
largely monolithic. Reconfiguring the instance adaptation strategy in such a system, for example,
requires exchanging the whole schema manager component as changes to the instance adaptation
strategy are not localised (cf. fig. 1(c)). The reconfigurability problem simply moves to a different
granularity. This also limits possibilities for dynamic reconfiguration. Application specific
reconfiguration of the instance adaptation strategy, for example, requires dynamically exchanging
the whole schema manager component which is an expensive task. Such reconfiguration would be
cost-effective if changes at the fine granularity were localised without compromising the system
performance obtained through closely woven components i.e. both modularity and efficiency need
to be preserved.

3. Aspect-Oriented Programming

Aspect-oriented programming (Kiczales et al. 1997) aims at easing software development by
providing further support for modularisation.Aspectsare abstractions which serve to localise any
cross-cutting concerns e.g. code which cannot be encapsulated within one class but is tangled
over many classes. A few examples of aspects are memory management, failure handling,
communication, real-time constraints, resource sharing, performance optimisation, debugging and
synchronisation. Although patterns (Gamma et al. 1995) can help to deal with such cross-cutting
code by providing guidelines for a good structure, they are not available or suitable for all cases
and mostly provide only partial solutions to the code tangling problem. With AOP, such cross-
cutting code is encapsulated into separate constructs: the aspects. As shown in fig. 2 classes are
designed and coded separately from code that cross-cuts them (in this case debugging and
synchronisation code). The links between classes and aspects are expressed by explicit or implicit
join points. An aspect weaveris responsible for merging the classes and the aspects with respect
to the join points. This can be done statically as a phase at compile-time or dynamically at run-
time (Kenens et al. 1998, Kiczales et al. 1997).

Different AOP techniques and research directions can be identified. They all share the common
goal of providing an improved separation of concerns. AspectJ (Xerox 2000) is an aspect-
oriented extension to Java. The environment offers an aspect language to formulate the aspect
code separately from Java class code, a weaver and additional development support. AOP



www.manaraa.com

extensions to other languages have also been developed. (Boellert 1999), for example, describes
an aspect language and a weaver for Smalltalk.

Aspects

Aspect
Weaver

executable
Code

Square

Join Points

Classes

Synchronisation

Circle

Join Points

collects "cross-cutting" Code
new Program Constructs

Debug

implicit or explicit Connection

merges Classes and Aspects
with respect to Join Points
(at Compile-Time or Run-Time)

Fig. 2: Aspect-Oriented Programming

Other AOP approaches aiming at achieving a similar separation of concerns include subject-
oriented programming (Harrison et al. 1993), composition filters (Aksit et al. 1998), adaptive
programming (Lieberherr 2000, Mezini et al. 1998) and Hyperspaces (IBM 2000). In subject-
oriented programming different subjective perspectives on a single object model are captured.
Applications are composed of “subjects” (i.e. partial object models) by means of declarative
composition rules. The composition filters approach extends an object with input and output
filters. These filters are used to localise non-functional code. Adaptive programming is a special
case of AOP where one of the building blocks is expressible in terms of graphs. The other building
blocks refer to the graphs using traversal strategies. A traversal strategy can be viewed as a partial
specification of a class diagram. This traversal strategy cross-cuts the class graphs. Instead of
hard-wiring structural knowledge paths within the classes, this knowledge is separated.
Hyperspaces introduce the notion ofmulti-dimensional separation of concernsby permitting
clean separation of multiple, potentially overlapping and interacting concerns simultaneously with
support for on-demand remodularisation to encapsulate new concerns at any time.

Experience reports and assessment of AOP can be found in (Kersten et al. 1999, Pulvermueller et
al. 1999).

4. Reconfigurability: The Aspect-Oriented Solution

Since reconfigurability is a cross-cutting concern (as discussed in section 2), we propose
separating reconfigurable features from components using aspects. This applies to both coarse and
fine-grained components. As a result the approach can be employed for cost-effective
reconfiguration in monolithic ODBMSs (cf. fig. 1(a)), individual components in component-based
ODBMSs (cf. fig. 1(b) & (c)) or components at finer granularities.

As shown in fig. 3 aspects are used to separate reconfigurable features from the core functionality
and other non-configurable features of a component. Changes to the features encapsulated by
aspects are localised making it possible to achieve a high degree of reconfigurability. Both minor
and major reconfigurations can be carried out in a cost-effective fashion. It also makes it possible
to exchange fine-grained reconfigurable features without a ripple effect on the rest of the
component. Changes are automatically propagated during weaving (at compile-time or run-time)
or reweaving (at run-time). It might be argued that the proposed approach simply shifts the
complexity of the reconfiguration process to the aspect weaver. This might be true if for each
reconfigurable feature a specifically designed aspect language and weaver were being used. Since
most ODBMSs are developed using general-purpose programming languages, a general-purpose



www.manaraa.com

aspect language similar to AspectJ (Xerox 2000) and its associated weaver will be sufficient to
provide a woven solution which is both performance optimised and correct. Understandably the
correctness of the code produced by the weaver and efficiency of the weaver (especially during
dynamic weaving) will be crucial to the process. In case one or a few reconfigurable features
require specific aspect languages and weavers the effort to develop these will pay-off in terms of
reduced reconfiguration and maintenance costs.

Aspect 1

Aspect 3

Aspect 2

Core Functionality

Reconfigurable Features

Component

Non-configurable Features

Fig. 3: Using aspects to separate reconfigurable features from a component (whether coarse-
grained or fine-grained)

Coarse
Grained

Component
Aspect 1

Aspect 2

Fine
Grained

Component
Aspect 3

Aspect 4 Fine
Grained

Component
Aspect 5

Coarse
Granularity

Fine
Granularity

Fig. 4: Propagating reconfigurability aspects at coarse granularity to fine granularity

It should be noted that although fig. 3 shows reconfigurability aspects associated with one
particular component, one such aspect can serve more than one component if the same
reconfigurable feature exists in all of them. These semantics make it possible to separate common
reconfigurable features at a coarse granularity and transparently propagate them to finer
granularities as shown in fig. 4. One example of such reconfigurable aspects is error-handling.
Although the specific error-handling routines for various components considerably vary, the
ODBMS normally has a uniform error-handling strategy. The error-handling strategy can exist at
the coarse granularity (the ODBMS level) as a reconfigurable aspect while the error-handling



www.manaraa.com

routines specific to the finer-grained components can exist at their particular granularities. The
reconfigurable error-handling strategy is automatically propagated to the finer-grained
components when it is woven into the ODBMS.

The aspect-oriented solution also provides support for both static and dynamic reconfiguration as
discussed in the following sections.

Aspect 1

Aspect 3

Aspect 2

Core Functionality

Reconfigurable Features

Component

Non-configurable Features

Core
Functionality

Component

Non-configurable
Features

Compile-time
Weaving

R
ec

on
fig

ur
ab

le
F

ea
tu

re
s

Aspect 1

Aspect 2

Run-time
Weaving

Compile-time Run-time

Fig. 5: Static and dynamic reconfiguration using the aspect-oriented approach

4.1 Static Reconfiguration

The aspect-oriented approach makes static reconfiguration possible by allowing reconfiguration
or exchange of features encapsulated by aspects before the weaving tool performs the weaving at
compile-time. As shown in fig. 5Aspect 1, Aspect 2and Aspect 3can be reconfigured or
exchanged with localised changes before the compile-time weaving process weaves them with the
rest of the component. Aspects encapsulating features that need reconfiguration at compile-time
only and not at run-time are merged with the rest of the component at compile-time and do not
exist at run-time. This reduces the overhead of managing a large number of aspects and their
weaving/reweaving at run-time.Aspect 3in fig. 5 is an example of such an aspect.

4.2 Dynamic Reconfiguration

Aspects encapsulating features which require reconfiguration at run-time have a lifetime extended
beyond compile-time. They exist at run-time and may even outlive the program execution (Rashid
2000a).Aspect 1and Aspect 2in fig. 5 are examples of such aspects. As shown in fig. 5 such
aspects fall into two categories:

• Aspects encapsulating features less frequently reconfigured at run-time

• Aspects encapsulating features frequently reconfigured at run-time

Aspect 1in fig. 5 is an example of the former whileAspect 2is an example of the latter. In the
exampleAspect 1is woven at compile-time and rewoven at run-time only when it is reconfigured



www.manaraa.com

(rarely). The weaving ofAspect 2on the other hand is left to run-time. As shown by the dotted
line around the woven feature (encapsulated byAspect 2) Aspect 2is woven and rewoven at run-
time frequently due to extensive dynamic reconfiguration. It should be noted that the scenario in
fig. 5 is just an example.Aspect 2could have been woven at compile-time and still frequently
reconfigured at run-time. The example simply demonstrates that it is not necessary to weave all
the dynamically reconfigurable features at compile-time and vice versa.

4.3 Implementation

The aspect-oriented approach has been employed to provide a dynamically reconfigurable instance
adaptation strategy in the SADES evolution system (Rashid et al. 1998, Rashid et al. 1999a,
Rashid et al. 1999b, Rashid 2000b). It has also been applied to achieve reconfigurable versioning,
clustering and inheritance in object-oriented databases (Rashid et al. 2000b). Due to space
limitations the following discussion focuses on reconfigurable instance adaptation in SADES only.
Interested readers are referred to (Rashid et al. 2000b) for a description of other reconfigurable
features mentioned above.

Fig. 6: Database Structure before Evolution

In order to demonstrate the reconfigurability of the instance adaptation strategy in SADES we
have employed one of the evolution scenarios from our case studies at Open College of the North
West. Fig. 6 shows the database structure prior to evolution (it is assumed that the class hierarchy
is single-rooted). The class hierarchy does not conform to good OO design principles as the class
Studentis not a subclass of the classPerson. Fig. 7 shows the structure to be adopted to conform
to good practice. In this structure the classStudentbecomes a subclass of the classPerson. The
classPersondefines attributes common to both student and staff objects. A non-leaf classStaff is
introduced to capture attributes specific to staff objects. In order to simplify the description, the
modification of the classPerson in the evolution scenario is used for describing the SADES

Person

Surname : String
First Name : String
Title : String
Address : String
Post Code : String
Telephone Number : String
Fax Number : String
Mobile Number : String
Passed D32 Qualification : boolean
Passed D34 Qualification : boolean
Passed D36 Qualification : boolean

Coordinator Exam Officer Moderator

Student

Last Name : String
First Name : String
Middle Name or Initial : String
Date of Birth : Date
Sex : char

PrincipalTutor

Root



www.manaraa.com

instance adaptation strategy. For further simplification attributes defined by subclasses are not
considered in the objects associated withPerson. This simplification is syntactically and
semantically correct asPersonis not an abstract class and can be instantiated directly.

Fig. 7: Database Structure after Evolution

As shown in fig. 8 the instance adaptation strategy and adaptation routines in SADES are
separated from the schema manager and class versions respectively using aspects (the aspects are
specified using a general-purpose, declarative aspect language modelled on AspectJ (Xerox
2000)). The instance adaptation strategy is reconfigurable and can be dynamically woven into the
schema manager using a weaver providing support for compile-time, run-time and persistent
aspects. The selection of aspects containing the adaptation routines is dependent on the instance
adaptation strategy chosen. For example, from fig. 8 aspects containing the handlers will be
woven only when the error handlers strategy (Skarra et al. 1986) is woven into the SADES
schema manager. If the aspect containing the error-handlers strategy is exchanged with the one
containing the update/backdate methods strategy (Monk et al. 1993), the aspects containing the
handlers will be exchanged with those containing the update/backdate methods. Note that the
choice of instance adaptation strategies is not limited to error-handlers and update/backdate
methods. Other instance adaptation strategies can be employed as shown in fig. 8.

Separating the instance adaptation code into aspects allows reconfiguration of the instance
adaptation strategy and adaptation routines without posing maintenance problems for the schema
manager or existing class versions. The changes are local to the aspect and are propagated to the
class versions through dynamic weaving. This makes it possible to reconfigure the instance
adaptation strategy for specific evolution scenarios such as performing or simulating an
information preservingmove of attributes across classes or class versions. For example, in fig. 8,
the backdate method for objects associated withPerson_V2can test whether the object being

Person

Last Name : String
First Name : String
Middle Name or Initial : String

Coordinator Exam Officer Moderator

Student

Date of Birth : Date
Sex : char

PrincipalTutor

Root

Staff

Title : String
Address : String
Post Code : String
Telephone Number : String
Fax Number : String
Mobile Number : String
Passed D32 Qualification : boolean
Passed D34 Qualification : boolean
Passed D36 Qualification : boolean



www.manaraa.com

associated withPerson_V1is a Staff object. If this is the case the attributesTitle, Address,etc.
can take on the values of the attributes in theStaff object. This is a customisation of the
update/backdate methods strategy employed by CLOSQL and makes it possible to simulate the
move attribute primitivenot available in the SADES evolution taxonomy.

(a) (b)

Person_V1

Surname: String
First Name: String
Title: String
Address: String
Post Code: String
Telephone Number: String
Fax Number: String
Mobile Number: String
Passed D32 Qualification: boolean
Passed D34 Qualification: boolean
Passed D36 Qualification: boolean

Surname:Smith
First Name: James
Title: Dr.
Address: Lancaster, UK
Post Code:LA1 4YR
Telephone Number:01524-555222
Fax Number: 01524-555333
Mobile Number: 0888-666444
Passed D32 Qualification:true
Passed D34 Qualification:true
Passed D36 Qualification:false

Ob

Person

Last Name: Smith
First Name: Jane
Middle Name or Initial: R.

Oa

Person_V1
Surname: String
First Name: String
Title: String
Address: String
Post Code: String
Telephone Number: String
Fax Number: String
Mobile Number: String
Passed D32 Qualification: boolean
Passed D34 Qualification: boolean
Passed D36 Qualification: boolean

Surname:Smith
First Name: James
Title: Dr.
Address: Lancaster, UK
Post Code:LA1 4YR
Telephone Number:01524-555222
Fax Number: 01524-555333
Mobile Number: 0888-666444
Passed D32 Qualification:true
Passed D34 Qualification:true
Passed D36 Qualification:false

Ob

Person_V2
Last Name: String
First Name: String
Middle Name or Initial: String

Person

Instance
Adaptation
Strategy

Adaptation
Routines for
Person_V1

Adaptation
Routines for
Person_V2

Woven into
Schema Manager

W
ov

en
in

to
Pe

rs
on

_V
1

W
ov

en
in

to
Pe

rs
on

_V
2

Code for
Error-Handlers
Strategy

Code for
Update/Backdate
Methods Strategy

Handlers:
Surname
Title
Address
Post Code
…

Handlers:
Last Name
Middle Name or Initial

Backdate Method:
Surname:=Last Name
First Name:=First Name
Title:= Title of

corresponding
staff object if any

Address:=Address of
corresponding
staff object
if any

…

Update Method:
Last Name:=Surname
First Name:=First Name
Middle Name or Initial:= “ ”

OR

OR
Other StrategiesRoutines for Person_V2Routines for Person_V1

Legend Class Object Associated Object

Ob: Object created before evolutionOa: Object created after evolution

Version Derivation Path Aspect Weaving

Exchangeable Aspects

Fig. 8: Instance adaptation in SADES(a) Before evolution(b) After evolution



www.manaraa.com

The high degree of reconfigurability in the SADES instance adaptation strategy is in direct
contrast with existing evolution systems such as ENCORE (Skarra et al. 1986) and CLOSQL
(Monk et al. 1993). These systems introduce the adaptation code directly into the class versions
upon evolution. Often, the same adaptation routines are introduced into a number of class
versions. Consequently, if the behaviour of a routine needs to be changed maintenance has to be
performed on all the class versions in which it was introduced. There is a high probability that a
number of adaptation routines in a class version will never be invoked as only newer applications
will attempt to access properties and methods unavailable for objects associated with the
particular class version. The adaptation strategy is spread across the system and adoption of a
new strategy has a ripple effect on the rest of the system and triggers the need for changes to all
or a large number of versions of existing classes. A more detailed description of the dynamically
reconfigurable instance adaptation strategy can be found in (Rashid et al. 2000a).

5. Open Issues

The reconfigurability approach proposed in this paper heavily relies on weaver efficiency. One of
the key research issues is the development of correct and efficient weaving mechanisms.
Efficiency is particularly critical for dynamic weaving as it introduces additional overhead at run-
time and can be feasible only with efficient weavers. AOP research, to date, has mainly focussed
on the development of AOP techniques, their correctness and design issues for aspect languages.
Different lifetimes of aspects have also been explored (Kenens et al. 1998, Kiczales et al. 1997,
Rashid et al. 2000b, Rashid 2000a). However, the development of efficient weavers has not been
considered. We are of the view that efficiency and correctness of weavers will be the determining
factors for commercial feasibility of AOP and hence need extensive research. One interesting
solution worth exploring isselective weaving(Rashid et al. 2000a): weaving only the modified or
previously unwoven parts of an aspect instead of the whole aspect itself.

Another issue identified during the course of our work is the need for parameterised aspects. At
present this is not supported by aspect languages. If aspect parameterisation is available the
aspects encapsulating reconfigurable features can be more generic and maintainable. An aspect
can be parameterised by classes in which it is to be woven, hence, making the join points and
crosscuts generic. Specialweave parameterscan be used to provide a generic reconfiguration
mechanism during dynamic weaving.

6. Conclusions and Future Work

This paper has proposed the use of aspects to achieve a high degree of reconfigurability in object
database management systems. The novelty of the work lies in the cost-effective reconfiguration
mechanism localising changes to reconfigurable features and automatically propagating them
during weaving. It was argued that similar reconfigurations are expensive in existing systems
because reconfigurable features are closely woven with non-configurable features and each other.
This code tangling is a direct effect of the trade-off between modularity and efficiency. The use of
aspects to separate reconfigurable features provides a mechanism which preserves both
modularity and efficiency. The features encapsulated by aspects can be reconfigured at both
compile-time and run-time with localised changes and closely woven with other features using
weaving tools providing support for different aspect lifetimes. The effectiveness of the approach
has been demonstrated through its application to achieve dynamically reconfigurable, cost-
effective instance adaptation in the SADES evolution system. Our work in the future will focus on
the open issues identified in section 5. We will explore the development of efficient weaving



www.manaraa.com

mechanisms in order to reduce the overhead associated with such a highly reconfigurable
architecture especially at run-time. We will also investigate the syntax and semantics of aspect
parameterisation and its potential to make the reconfiguration mechanism more generic.

Acknowledgements. The work presented in this paper is supported by EPSRC grant
GR/R08612: AspOEv - An Aspect-Oriented Evolution Framework for Object-Oriented
Databases. The authors would also like to thank the Open College of the North West, UK for
providing opportunities for database evolution case studies.

References

(Aksit et al. 1998): M. Aksit, B. Tekinerdogan,Aspect-Oriented Programming using
Composition Filters, Proceedings of the AOP Workshop at
ECOOP ’98, 1998

(Boellert 1999): K. Boellert, On Weaving Aspects, Proceedings of the AOP
Workshop at ECOOP ’99, 1999

(Brown et al. 1996): A. W. Brown, K. C. Wallnau,Engineering of Component-Based
Systems, Component-Based Software Engineering, IEEE
Computer Society Press, 1996, pp. 7-15

(Gamma et al. 1995): E. Gamma, et al.,Design Patterns - Elements of Reusable Object-
Oriented Software, Addison Wesley, c1995

(Guzenda 2000): L. Guzenda,Objectivity/DB - A High Performance Object
Database Architecture, Invited Talk, Workshop on High
Performance Object Databases, Cardiff, UK, July 2000

(Harrison et al. 1993): W. Harrison, H. Ossher,Subject-Oriented Programming (A
Critique of Pure Objects), Proceedings of OOPSLA 1993, ACM
SIGPLAN Notices, Vol. 28, No. 10, Oct. 1993, pp. 411-428

(IBM 2000): IBM Research, USA,Multi-dimensional Separation of Concerns
using Hyperspaces, http://www.research.ibm.com/hyperspace/

(Kenens et al. 1998): P. Kenens, et al.,An AOP Case with Static and Dynamic Aspects,
Proceedings of the AOP Workshop at ECOOP ’98, 1998

(Kersten et al. 1999): M. A. Kersten, G. C. Murphy,Atlas: A Case Study in Building a
Web-based Learning Environment using Aspect-oriented
Programming, Proceedings of OOPSLA 1999, ACM SIGPLAN
Notices, Vol. 34, No. 10, Oct. 1999, pp. 340-352

(Kiczales et al. 1997): G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.
Loingtier, J. Irwin,Aspect-Oriented Programming, Proceedings of
ECOOP ’97, LNCS 1241, pp. 220-242

(Lieberherr 2000): K. J. Lieberherr,Demeter,
http://www.ccs.neu.edu/research/demeter/index.html

(McCann 2000): J. McCann,Component-based Operating Systems and their
Implications for Database Architectures, Invited Talk, Workshop
on High Performance Object Databases, Cardiff, UK, July 2000

(Mezini et al. 1998): M. Mezini, K. J. Lieberherr,Adaptive Plug-and-Play Components
for Evolutionary Software Development, Proceedings of OOPSLA
1998, ACM SIGPLAN Notices, Vol. 33, No. 10, Oct. 1998,



www.manaraa.com

pp.97-116

(Monk et al. 1993): S. Monk, I. Sommerville,Schema Evolution in OODBs Using
Class Versioning, SIGMOD Record, Vol. 22, No. 3, Sept. 1993,
pp. 16-22

(Pulvermueller et al. 1999): E. Pulvermueller, H. Klaeren, A. Speck,Aspects in Distributed
Environments, Proceedings of GCSE 1999, Erfurt, Germany (to be
published by Springer-Verlag)

(Rashid et al. 1998): A. Rashid, P. Sawyer,Facilitating Virtual Representation of CAD
Data through a Learning Based Approach to Conceptual
Database Evolution Employing Direct Instance Sharing,
Proceedings of DEXA ’98, LNCS 1460, pp. 384-393

(Rashid et al. 1999a): A. Rashid, P. Sawyer,Dynamic Relationships in Object Oriented
Databases: A Uniform Approach, Proceedings of DEXA ’99,
LNCS 1677, pp. 26-35

(Rashid et al. 1999b): A. Rashid, P. Sawyer,Transparent Dynamic Database Evolution
from Java, Proceedings of OOPSLA 1999 Workshop on Java and
Databases: Persistence Options (extended version to appear in L’
Object Journal, Vol. 6, No. 3, November 2000)

(Rashid et al. 2000a): A. Rashid, P. Sawyer, E. Pulvermueller,A Flexible Approach for
Instance Adaptation during Class Versioning, Proceedings of
ECOOP 2000 OODB Symposium (in print as an LNCS volume by
Springer-Verlag)

(Rashid et al. 2000b): A. Rashid, E. Pulvermueller,From Object-Oriented to Aspect-
Oriented Databases, Proceedings of DEXA 2000, LNCS1873, pp.
125-134

(Rashid 2000a): A. Rashid,On to Aspect Persistence, To Appear in Proceedings of
Net.ObjectDays 2000 Symposium on Generative and Component-
Based Software Engineering (GCSE 2000)

(Rashid 2000b): A. Rashid,SADES Java API Documentation 1999-2000,
http://www.comp.lancs.ac.uk/computing/users/marash/research/sades/index.html

(Skarra et al. 1986): A. H. Skarra, S. B. Zdonik,The Management of Changing Types
in an Object-Oriented Database, Proceedings of the 1st OOPSLA
Conference, Sept. 1986, pp. 483-495

(Xerox 2000): Xerox PARC, USA,AspectJ Home Page, http://aspectj.org/


